

Recent Development and Validation of Geant4 Hadronic Physics

Julia Yarba, Fermilab
On behalf of Geant4 Hadronic Group
CHEP 2012, New York City, NY
05/22/2012

Outline

- Introduction to Hadronic Physics in Geant4
- Current Key Developments
 - Fritiof string model (FTF)
 - Bertini Cascade (BERT)
 - Precompound and deexcitation (Preco)
 - High Precision low energy neutrons (HP)
 - Capture and annihilation
- Other Available Models
- Validation
- Summary

Introduction to Hadronic Physics in Geant4

- Physics models = final state generators
- Physics process = cross section + final state model
- Physics list = list of processes for each particle
 - Hadronic models are valid over finite energy ranges —— register several processes in a list, overlaps in energy
 - Several lists in Geant4, choice depends on the application
 - Evolution:

```
LHEP -> QGSP -> QGSP_BERT "family" -> FTFP_BERT
```


Fritiof (FTF) String Model

- Simulates hadron-hadron, hadron-nucleus, and nucleus-nucleus interactions
- Valid in 3GeV-1TeV
- When modeling hadronic showers, important for
 - Energy response
 - Energy resolution
- Interest renewed several years ago, after discovering QGSP-related discontinuities in calorimetric energy response vs beam energy

Note: In the core of several MC generators (HIJING, ART, UrQMD)

FTF Development Highlights

- Addition and tuning of Reggeon Cascade
 - Cascading as a repeated exchange of quarks between nucleons
 - Allows better nuclear destruction/de-excitation after the initial high energy interaction
- Improved low mass string formation (add quark exchange) and fragmentation
- Interfaces smoothly with cascade models (BERT)
- Tuning and Validation with HARP-CDP data
- Extension to anti-matter: anti-baryons (more later), light anti-ions

FTF Validation – HARP-CDP data

A. Bolshakova et al., Eur. Phys. J. C63 (2009) 549-609

FTF Validation – NA61/SHINE data

N.Abgrall et al., Phys. Rev. C84 (2011) 034604

FTF improvement between G4.9.2 (--) and G4.9.4 (--) 31GeV/c p on C $\longrightarrow \pi^+ + X$

FTF Validation – MIPP data (FNAL-E907)

T.Nigmanov et al., Nucl. Instrum. Meth. A598:394-399,2009

Bertini (BERT) Intranuclear Cascade

- Geant4 adaptation of earlier code (1960s)
- Valid for p, n, pi, K, hyperons of Ekin<10GeV
- Precompound and evaporation:
 - Its own internal version
 - Interface to Geant4 Precompound model
- Important for
 - Energy response and resolution
 - Shower lateral profile
- Extensively validated with data from thin target experiments

BERT Development Highlights

- Revision of internal cross sections
- Added trailing effect
 - Local density reduction in nuclear medium following an individual scatter within nucleus -> predicts fewer final state nucleons
- Re-scattering from string models
 - High energy scatter on nucleon produces fragments either inside or outside the target nucleus
- Incorporated gamma-nucleon interactions
- Support of capture processes (more later)
- Significant code structure improvement

BERT vs FTF at 5.0-7.5GeV/c

Yu.D. Bayukov et al., Sov.J.Nucl.Phys.42:116-121,1985

7.5GeV/c p on C or U KE of secondary p at θ =59.1

5GeV/c pi+ on C or U KE of secondary p at θ =59.1

KE of secondary p at θ =119.0

KE of secondary p at θ =119.0

BERT at 730MeV – IAEA benchmark

http://www-pub.iaea.org

Precompound/Evaporation Model

- Valid for any excited nucleus
- Important for
 - Energy resolution and energy response
- Precoumpound
 - Particle emission vs internal transition between exciton states
 - Revised transition probabilities and exit conditions
- De-excitation processes revised
 - Fission
 - Fermi breakup (light nuclei)
 - Weisskopf-Ewing Evaporation: n, p, D, He3, alpha
 - Photon evaporation
 - New GEM to emit heavy fragments (Z<13 and A<29)

High Precision (HP) Low Energy Neutrons

- Data-driven neutron transport at Ekin<20MeV
- Important for
 - Better lateral profile of hadronic showers
 - Time dependent hadronic showers development
 - Background radiation study
- Interface to updated ENDF library
 - Cross sections for neutrons on isotopes
 - Reaction final state products
 - More isotopes included (395 vs 181 in earlier version)
- Benchmarking and extensive validation underway

类

HP comparison vs MCNPX

Recent improvements bring Geant4 into very good agreement with MCNPX

Capture/Annihilation Models

- Current status:
 - Simplified (Gheisha-like) code used for mu
 - CHIPS model for all other particles
- New Development to replace CHIPS this year
 - Bertini(+Preco) for pi, K, Sigma
 - FTF for pbar; plans to extend for other anti-baryons and anti-nuclei
- Started work to restructure mu capture code

Capture/Annihilation – pi-, K-, pbar

Data:
R.Madey et al., Phys.Rev.
C25, 3050-3067, 1982
K.Larson et al., Phys.Rev.
D47(3), p.47, 1993

Other Available Models

- Low/High Energy Parametrized (LEP/HEP) models: earliest model in Geant4, port of Gheisha, fast but rough
- Quark Gluon String (QGS) model: an earlier alternative to FTF string model, current default high energy generator in production QGSP "family" of physics lists
- CHiral Invariant Phase Space (CHIPS) model: currently used for gamma-nuclear, nuclear capture of negatively charged hadrons, quasi-elastic in QGS, p-A and n-A elastic, kaon and hyperon nuclear cross sections
- Binary Cascade (BIC) model: theory-driven alternative to Bertini cascade, accurate at Ekin<2GeV

Validation of Physics Lists: SimplifiedCalo Tests

- Stringent requirements are set by calorimeters
 - Typical observables: energy response, energy resolution, shower transverse and longitudinal shapes
 - Hadronic showers are most challenging
- Simplified geometry of calorimeters
 - ATLAS, CMS, LHCb
 - Zeus(compensating), CALICE (high granularity)
 - "Sandwich" geomrety, no readout effects
- Frequent simulation to monitor developments
- Comparison vs data when available

pi- Beam on Sampling Calorimeter

Cu / Liquid Ar Improvement with the use of FTF

Pb / Liquid Ar Improvement with the use of HP neutrons (wider transverse profile)

J. Yarba, FNAL - 05/22/2012

Consolidation of Geant4 Validation Results (I)

New/improved models \longleftrightarrow increased number of comparison vs data

Consolidation of Geant4 Validation Results (II)

http://g4validation.fnal.gov:8080/G4HadronicValidation

Summary

- Significant progress has been made in Geant4
 Hadronic Physics, driven and validated with the
 data or feedback by past, present and proposed
 experiments
- Development concentrates on key models:
 FTF, BERT, Preco, HP neutrons
- Several production physics lists are provided; they are stable but not frozen, and aim to improve with feedback from experiments